SUMMARY OF ALS RESEARCH IN CANADA

The ALS Society of Canada is committed to:

Use your binoculars located on the top of your screen to make your search easier.

- Investing our research funds where they will have the most impact.
- Funding excellent and relevant peer-reviewed research.
- Funding research that is evaluated at a high level using international evaluation methods adopted by the Canadian Institutes of Health Research.

We fund only the most promising projects by the finest scientists and, over the years, this strategy has been rewarded with significant advances in our knowledge of ALS. With the acceleration of results due to advances in neurology and other areas of science, we know that, effective therapies and a cure are now, more than ever, within reach. The following is a list of researchers who are currently studying ALS and neuromuscular diseases in Canada.

Research Projects funded by the ALS Society and/or the Neuromuscular Research Partnership

Neuromuscular Research Partnership

In 1999, The ALS Society of Canada partnered with the Canadian Institutes of Health Research, and Muscular Dystrophy Canada to create the Neuromuscular Research Partnership. This partnership was created to collectively fund health research by providing operating grants in the area of neuromuscular diseases with a mandate to find a cause, treatment options and eventually result in a cure.

	Dr. Jean-Pierre Julien	Dr. Georg	e Karpati & Dr. Joséphine Nalbantoglu
Where:	Université Laval	Where:	McGill University, Montreal Neurological Institute
Project: Funding:	Role of Chromogranin-mediated Secretion of Superoxide Dismutase Mutants in ALS Pathogenesis. Chromogranins are molecules made by nerve cells that usually aid production and packaging of other proteins. ALS Society of Canada and The ALS	Project: Funding: Project:	Molecular therapies for dystrophin deficiency NRP (2005) - Three years Extrasynaptic endogenous utrophin upregulation in skeletal muscle: A therapeutic approach for
	Association in the U.S commenced in 2005	Funding:	Duchenne muscular dystrophy (DMD) NRP (2004)-Three years (George Karpati)
Project:	Pathogenic mechanisms associated with neurofilament disorganization	Project:	Development of efficient and safe gene transfer
Funding:	NRP (2005) - Five years	,	to skeletal muscle for the therapy of dystrophin deficiency
Project:	The role of inflammation in pathogenesis of ALS (with Dr. Serge Rivest)	Funding:	NRP (2002)-Three years (George Karpati & Josephine Nalbantoglu)
Funding:	NRP (2003)-Five years	Project:	Utrophin upregulation in skeletal muscle: A
Project:	Generation and analysis of a new mouse model for ALS	, Funding:	Therapeutic Approach for DMD NRP (2000) - Three years
Funding:	NRP (2002)-One year	Overview:	Exploring how utrophin, a protein, can be
Project: Funding:	The role of inflammatory cytokines in pathogenesis of ALS NRP (2000)-Three years		"upregulated" or inserted to lessen the impact of a dystrophin deficiency. DMD is caused by a deficiency of the dystrophin protein.
Overview:	Developing a novel mouse model for the juvenile form of ALS.		

	Dr. David J. Picketts		Dr. Michael Sinnreich
Where:	Ottawa Health Research Institute	Where:	McGill University, Montreal Neurological Institute
Project:	Genetic dissection of ISWI function during neurogenesis	Project:	Modular flexibility of dysferlin-possible applications for gene therapeutic strategies
Overview:	Studying two proteins - SNF2H and SNF2L - for their role in the complex chain of molecules and signals that help to turn stem cells into neurons in a developing embryo to better understand their role in the growth and differentiation of both neurons and muscles.	Overview:	Studying unique cases of LGMD 2B (limb-girdle muscular dystrophy) to further understand dysferlin (muscle protein thought to be involved in the repair of muscle damage caused naturally through exercise) and uncover ways to replace its relatively large gene inside the cell.
Funding:	NRP (2005) - Three years	Funding:	NRP (2005) - One year

	Dr. Kenneth E. Hastings		Dr. Hakima Moukhles		
W	Where:	Montreal Neurological Institute, McGill University	Where:	University of British Columbia	
Pı	roject:	Fiber-type-specific and actively-regulated gene expression in fast skeletal muscle	Project:	Dystroglycan function in glial cells	
Over	view:	Investigating the molecular events that determine muscle fiber-type. Muscle fiber is an important aspect of muscle function. Muscle fibres develop into their two separate varieties - fast and slow.	Overview:	Studying why there is sometimes an effect on the brain when someone has a neuromuscular disorder. Studying the protein dystroglycan implicated in several forms of muscular dystrophy. Glial cells form a protective insulating layer around nerve cells.	
Fur	nding:	NRP (2005) - Three years, NRP (2002)-Three years	Funding:	NRP (2005)- Three years	

	Dr. Louise R. Simard		Dr. Heather Durham		
Where:	Hôpital Sainte-Justine(Montreal)	Who	ere:	McGill University, Montreal Neurological Institute	
Project:	Characterization of "survival of motor neurons" (SMN) gene regulation	Proj	ect:	The role of protein chaperones and proteasome-mediated proteolysis in the pathogenesis of motor neuron diseases	
Overview:	Studying how SMN gene expression is regulated during development. Mutations in the SMN gene are responsible for childhood spinal muscular atrophy, a severe lower motor neuron disease.	Overvie	·w:	The Durham lab studies why motor neurons are more vulnerable to damage in ALS than other cells in order to identify protective therapies. Durham's lab is investigating the importance of protein chaperones and proteosomes in helping cells deal with damaged proteins. The chaperones' job is to round up damaged proteins (in this case, the mutant SOD1) and shuttle them to the proteosomes where they are chopped up and discarded.	
Funding:	NRP (2005) - Three years, NRP (2001) - Three years	Fundi	ing:	NRP (2005)-Five years, NRP (2002)-Three years	

	Dr. Bernard Brais		Dr. F.J. Dilworth
Where:	Centre Hosp. de l'Université de Montreal	Where:	Ottawa Health Research Institute
Project: Funding:	Cloning and characterising the mutated gene responsible for a new form of French-Canadian recessive spastic ataxia NRP (2005) - Three years	Project:	Elucidating the mechanisms directing temporally ordered gene expression by myoD
Project: Funding:	Cloning and characterising the mutated gene responsible for a French-Canadian recessive ataxia associated with severe polyneuropathy NRP (2003) - Three years		
Project: Funding:	Oculopharyngeal muscular dystrophy (OPMD) and polyalanine toxicity NRP (2001)-Three years		
Overview:	Seeking to understand how the mutation - a lengthening of a portion of specific protein - leads to OPMD and other related disorders so that further research can be directed toward effective therapies. OPMD is a hereditary disease that results in generalized muscle weakness, particularly those responsible for eyelid elevation	Overview:	Studying how and why the the myoD gene (that codes for the myoD protein molecule) assists in changing the natural stem cells found in the embryo into a highly organized system of skeletal muscles.
	and swallowing.	Funding:	NRP (2005) - Five years

Edor Kabashi, PhD Student		Miranda Tradewell, PhD Student		
Where:	McGill University, Montreal Neurological Institute (Dr. Heather Durham's Lab)	Where:	McGill University, Montreal Neurological Institute (Dr. Heather Durham's lab)	
Project:	Problems with Protein Disposal in ALS	Project:	The Role of Calcium in Motor Neuron Disease	
Overview:	Contributing to a better understanding of pathophysiology of ALS and other neurodegenerative disorders and to offer new therapeutical agents to help people with ALS.	Overview:	Seeking not only to examine the cause of motor neuron diseases such as ALS, but to gain a better understanding of why the biology of motor neurons makes them vulnerable to the toxicity of mutant proteins compared to other cells.	
Funding:	Awarded two years of funding by the ALS Society of Canada (2004)	Funding:	Awarded three years of funding by the ALS Society of Canada (2004)	

	Dr. Avijit Chakrabartty			Dr. Robin J. Parks
Where:	University Health Network Ontario Cancer Institute		Where:	Ottawa Health Research Institute Ottawa Hospital Research Institute
Project:	Protein misfolding and conformational disease		Project:	Adenovirus vectors for gene therapy of muscle
Overview:	Studying how protein folding affects cells and the entire body to better understand ALS.		Overview:	Has several advantages over traditional Ad vectors and has shown promising results in pre-clinical studies
Funding:	NRP (2004) - Three Years		Funding:	NRP (2004)-Three years (with Jonathan L. Bramson) NRP (2001)-Three years

	Dr. Vanessa J. Auld		Dr. Jérôme Frenette
Where:	University of British Columbia	Where:	Université Laval
Project:	Glial cell development and function at the Drosophila neuromuscular junction	Project:	Inflammatory cell recruitment and function in skeletal muscles following hind limb unloading and reloading: New strategies to prevent muscle atrophy and dysfunction
Overview:	Studying the physiological basics of glia cells in fruit fly development. Nervous system development and function is guided by control cells called glia.	Overview:	Studying how a side effect of mobility - secondary atrophy - can be reduced or diminished.
Funding:	NRP (2004)-Three years	Funding:	NRP (2004)-Three years

Dr. Jiming Kong			Dr. Susan O. Meakin
Where:	University of Manitoba	Where:	Robarts Research Institute (London)
Project:	ALS: Role of BNIP3 in mutant SOD1-induced motor neuron death	Project:	Nesca, a novel intracellular signaling adapter facilitates neurotrophin dependent neurite outgrowth.
Overview:	Examining ways to slow or decrease ALS symptoms. BNIP3 is a recently discovered protein, which appears to slow and control apoptosis (programmed cell death is a genetically controlled mechanism for the body to eliminate cells that have outlived their usefulness) in motor neurons.	Overview:	Determining the mechanism(s) which facilitate a novel intracellular protein that Meakin and her group have identified, named Nesca new molecule containing an SH3 domain at the carboxyterminus.
Funding:	NRP (2004)-Three years	Funding:	NRP (2004)-Two years

	Dr. Robert G. Korneluk	Dr. Janice Robertson	
Where:	Children's Hospital of Eastern Ontario (Ottawa)	Where:	The Centre for Research in Neurodegenerative Diseases at the University of Toronto
Project:	The X-linked inhibitor of apoptosis (XIAP): A therapeutic agent for the treatments of muscular dystrophy	Project:	Peripherin abnormalities in ALS
Overview:	Helping to develop therapies for neuromuscular disorders. Apoptosis - or programmed cell death - is a genetically controlled mechanism for the body to eliminate cells that have outlived their usefulness.	Overview:	Focusing on peripherin, a key protein involved in the pathological aggregates found in motor neurons in ALS. Peripherin is found in the neurofilament aggregates that clog motor neurons in ALS. By searching for toxic mutations in peripherin, she hopes to discover the echanisms that cause ALS. Robertson is the only researcher in Toronto who is focused exclusively on ALS.
Funding:	NRP (2004)-Three years	Funding:	NRP (2003) - Three years

J	Janka Hegedus, PhD Student			Dr. Elizabeth M. Meiering
Where:	University of Edmonton, Alberta. Works in Dr. Tessa Gordon's lab		Where:	University of Waterloo
Project:	Thesis work involves characterizing the progressive loss of motoneurons and their muscle fiber connections in ALS.		Project:	Folding and aggregation of ALS-associated mutant superoxide dismutases
Funding:	The NRP, National Sciences and Engineering Research Council and the Alberta Heritage Foundation for Medical Research.		Overview:	Looking at different classes of mutations and then characterising how the mutants behave and how that may be linked to the disease. Has successfully demonstrated a link between SODI mutations and neuronal aggregates.
			Funding:	NRP (2003)-Three years (with James R. Lepock)

Dr. Alexander E. Mackenzie				
Where:	Children's Hospital of Eastern Ontario (Ottawa)			
Project:	Modulation of apoptosis in mouse models of spinal muscular atrophy			
Overview:	Examining how cell death can be regulated in spinal muscular atrophy.			
Funding:	NRP (2003)-Three years (with Nathalie H. Gendron)			

	Dr. Stefano Stifani					
	Where: McGill University					
Project: Regulation of neuronal development in th mammalian nervous system						
	Overview:	Examining how the growth and development of neurons is controlled to better understand their function and develop possible treatments for neuromuscular disorders.				
	Funding:	NRP (2003)-Five years				

Dr. Michael J. Ferns			Dr. Tessa Gordon		
Where:	The Res. Institute of the McGill University Health Centre		Where:	University of Alberta	
Project:	Neurotransmitter receptor localization at the synapse: Regulation by rapsyn		Project:	A possible link between motoneuronal death and sprouting in ALS	
Funding:	NRP (2002)-Three years		Funding:	Tim Noël Research Award Winner, NRP (2002)-Three years	
Project: Funding:	Agrin's role in cholinergic synapse formation NRP (2001) - Three years				
Overview:	Understanding how a signaling factor - agrin - directs the formation of the cholinergic synapses. Agrin is required for the formation of the neuromuscular junction.		Overview:	Investigating the effect of injury, exercise and muscle fibre-type in transgenic mice and human tissue to gain insight into the pathways and progress rates for ALS.	

Dr. Stephen H. Gee							
Where: University of Ottawa							
Project:	The role of diacylglycerol kinase-zeta and syntrophins in neurite outgrowth						
Overview:	Studying the molecules that interact with dystrophin to better understand cognitive impairment associated with DMD. Syntrophins link receptors, ion channels, and signaling proteins to dystrophin.						
Funding:	NRP (2002)-Three years						

Dr. Jeffrey T. Henderson

Role of Eph-B family receptors in regulating

motoneuron identity and somatotopic axon outgrowth in the murine spinal cord

Studying how neurons communicate with each other during development and following injury. Eph receptors are a family of receptor tyrosine kinases - proteins that regulate communication

University of Toronto

between cells.

NRP (2002)-Three years

Where:

Project:

Overview:

Funding:

	Dr. Henry J. Klamut					
	University Health Network Ontario Cancer Institute					
to the devel		Telomerase-mediated lifespan extension applied to the development of autologous myoblast transplantation strategies for DMD				
	Overview:	Hoping to genetically engineer the patient myoblasts (undeveloped muscle cells) to express dystrophin, or utrophin.				
	Funding:	NRP (2002)-Three years				

	Dr. Robin N. Michel					
	Where: Concordia University, Montreal					
	Project: Calcineurin signaling in the regulation of s muscle fiber growth					
	Overview:	Michel was the first to demonstrate calcineurin's crucial role in the growth of adult muscle. Working to decipher some of the other factors affecting muscle growth. Calcineurin is found in all muscle types.				
Funding: NRP (2002)-Three years		NRP (2002)-Three years				

	Dr. David J. Schreyer						
Where:	University of Saskatchewan						
Project: Regulation of neuronal phenotype by a muscle-derived factor							
Overview:	Investigating the relationship between muscle cells and the motor neurons that target them, with the hope of identifying the factor that affects the way neurons react to injury.						
Funding:	NRP (2002)-Three years						

Dr. Marg	Dr. Margaret Fahnestock & Dr. James R. Bain						
Where:	McMaster University						
Project:	Mechanism of sensory protection of denervated muscle						
Overview:	Understand how sensory protection prevents muscle atrophy and determine if sensory protection is a potentially valuable therapeutic approach to nerve damage following injury or disorders such as muscular dystrophies, spinal muscular atrophies and ALS.						
Funding:	NRP (2003)-Three years						

	Dr. Carl-Eric Aubin	Dr. Salvatore T. Carbonetto		
Where:	Hôpital Sainte-Justine (Montreal)	Where:	Montreal General Hospital Research Institute, McGill University	
Project:	Study of the biomechanical factors related to the progression of scoliotic deformities in DMD	Project:	Dystrophin associated proteins in synapse structure and function	
Overview:	Identify the biomechanical factors involved in the progression of spinal curvature in children with DMD and understand the possible pathological pathways of scoliosis.	Overview:	Investigating the dystrophin complex in neurons. DMD results from mutations in the gene for dystrophin.	
Funding:	NRP (2001)-Three years	Funding:	NRP (2001)-Three years	

Dr. Denis Gravel			Dr. Bernhard Juurlink		
Where:	Université de Montreal Institut de réadaptation de Montreal		Where:	University of Saskatchewan	
Project :	Rôle des contractures dans la limitation de la marche des enfants atteints de dystrophie musculaire de Duchenne		Project:	Oxidative stress in the CNS and motoneuron disease	
Overview:	Studying the biomechanics of how muscle constriction in DMD limits gait		Overview:	Investigating how oxidative stress leads to inflammation, and how cellular mechanisms to slow oxidative stress may be enhanced to delay the onset of ALS. Oxidative stress is particularly associated with the familial form of ALS, caused by a mutation in SOD1.	
Funding :	NRP (2001)-Three years		Funding:	NRP (2001) -Three years	

Dr. David H. MacLennan			Dr. Jean Mathieu		
Where:	Where: University of Toronto		Where:	Centre Hosp. de l'Université de Montreal, Hôpital de Jonquière	
Project:	The pathophysiological and genetic basis for muscle diseases resulting from calcium dysregulation		Project:	Consequences of neuromuscular genetic disorders: disabilities, social participation, quality of life and their determinants among individuals with myotonic dystrophy	
Overview:	Studying how calcium dysregulation can produce muscle disease.		Overview:	Myotonic dystrophy is the most common form of muscular dystrophy in adults. Attempting to measure all factors, whether genetic, personal or environmental, that could play a role in the subject's social participation and quality of life.	
Funding:	NRP (2001)-Five years		Funding:	NRP (2001)-Three years	

	Dr. Gregory M. Ross	Dr. Ilona S. Skerjanc		
Where:	Where: Queen's University		University of Western Ontario	
Project:	Motor neuron death resulting from a zinc-or copper-induced loss of trophic support	Project:	The molecular biology of skeletal muscle development	
Overview:	Conducting basic research to identify critical steps in the nerve cell death process.	Overview:	Identifying the proteins that are key regulators of muscle development (termed transcription factors) to understand how they function and to determine what controls their ability to function.	
Funding:	NRP (2001)-Three years	Funding:	NRP (2001)-Five years	

Dr. Mei Zhen		Dr. Michael J. Strong Recipient of the Sheila Essey Award (2005)	
Where:	Mount Sinai Hospital	Where:	Robarts Research Institute (London)
Project:	Dissecting molecular mechanisms that regulate the presynaptic differentiation in C. elegans	Project: Funding:	Intermediate filament expression in sporadic ALS NRP (2001)-Two years
		Project: Funding:	A molecular and neuropathological characterization of the cognitive impairment of sporadic ALS ALS Canada and The ALS Association (U.S.) - commenced in 2004
Overview:	Working on how synaptogenesis is regulated. Neurons establish connections with each other, called synapses, and transmit information from one neuron to another and throughout the body.	Overview:	Discovering the role of neurofilament aggregates in ALS pathways.
Funding:	NRP (2001)-Three years		

Dr. Charles Krieger		Dr. Jack Puymirat	
Where:	Simon Fraser University	Where:	Centre Hospitalier, Universitaire de Québec
Project:	Functional role of hematogenous inflammatory cells in ALS	Project:	Ribozymes and antisense RNA as a tool to study myotonic dystrophy
Funding:	NRP (2004) - Three years (with Fabio M. Rossi)	Funding:	NRP (2000)-Three years, NRP (2003)-Three
Project: Funding:	Modulation of neuron death by protein kinase C and calcineurin in ALS NRP (2000)-Two years		years
Overview:	Attempting to find out why nerve cells die in ALS. In previous work he found that those living with ALS have elevated amounts the enzyme, protein kinase C, which has numerous functions within the cells of the body.	Overview:	Attempting to create gene therapies using "road blocks" that will stop the mutated genes that cause myotonic dystrophy from being read thereby reducing the symptoms of myotonic dystrophy.

Dr. Jacques P.Tremblay		Dr. John Roder	
Where:	Université Laval Centre Hospitalier de l'Universté Laval	Where:	Mount Sinai Hospital - Samuel Lunenfield Research Institute
Project: Funding:	Treatment of DMD: Correction of mutated dystrophin mRNA with ribozymes NRP (2001) -Three years	Project: Funding:	Novel therapies for ALS NRP (2000)-Three years
Project: Funding:	Autotransplantation of genetically modified myoblasts and muscle derived stem cells NRP (2000)-Three years, NRP (2003) - Three years		
Overview:	Growing myoblasts for transplantation in humans.	Overview:	Exploring the development of effective anti-glutamate agents that may stall or even reverse the relentless progression of ALS.

ADDITIONAL ALS RESEARCHERS

Dr. Shirley Liu		Marie Gingras, PhD student	
Where:	The Centre for Research in Neurodegenerative Diseases at the University of Toronto	Where:	Currently working with Dr. François Berthod, a researcher and professor at Laval University
Project:	Involves transgenic mice and the SOD1 gene that is responsible for the hereditary form of ALS. Liu is interested in an active immunization approach to the disease.	Project:	Developing a tissue-engineered model of the spinal cord in ALS research
Overview:	Provide hope that immunotherapy would have therapeutic potential to help those living with ALS.	Overview:	The objective for the project is to develop a three-dimensional model of a reconstructed spinal cord so that the interactions between different cell types and motor neurons can be studied.
		Funding:	Holds a studentship from the Fonds de la Recherche en Santé, and funding for the project is provided by a research grant from Muscular Dystrophy Canada.

Glen Hughes, Project Engineer		Teresa Sanelli, PhD Student	
Where:	Institute of Biomedical Engineering in Fredericton	Where:	University of Western Ontario, under the supervision of Dr. Michael Strong
Project:	Currently working with Dr. Colleen O'Connell, a physiatrist at the Stan Cassidy Centre for Rehabilitation, to develop a proposal for a set of tools that would allow more efficient tracking of the progression of ALS.	Project:	Working with primary motor neuron cells from transgenic mouse models of ALS that display ALS-like pathology (aggravates) in culture.
Overview:	Eventually such tools could be used for evaluating the effects of different drugs in clinical trials, and to better monitor the diminishing strength of people who have ALS.	Overview:	Examining these processes could give indications as to how to more successfully treat the disease.

	Dr. Sanjay Kalra		Dr. Shangxi Xiao	
Where:	University of Alberta	Where:	The Centre for Research in Neurodegenerative Disease at the University of Toronto	
Project:	Using magnetic resonance imaging (MRI) technology to learn more about what could be the cause of ALS and to find biomarkers. Biomarkers - also known as surrogate markers - are biologically-derived indicators that reflect the extent of the disease without having to physically examine tissue.	Project:	In his research, Xiao's aim is to identify the cause of alternative splicing isoforms, proteins derived from the same gene but with distinct physical and sometimes biological properties; usually a splice variant in the disease.	
Overview:	Techniques based on MRI have the potential to improve our understanding of ALS and the way that clinical trials are done.			

Dr. Guy Rouleau		François Gros-Louis, PhD Student	
Where:	University of Montreal	Where:	McGill University, with Dr. Guy Rouleau
Project:	Work in his lab has recently led to discovery that the disruption of the peripherin gene in humans accounts for a portion of ALS cases.	Project:	Currently screening candidate genes for a study on genetic causes of ALS. He is looking for other genes that may be responsible for the disease or that may affect onset and progression.

Dr. John Turnbull			Jason Wilson, PhD Student Recipient of the Brain Star Award (2005)	
Where:	McMaster University Hospital	Where	: University of British Columbia with Dr. Chris Shaw	
Project:	Researching ways to implement viral delivery vehicles for RNAi (ribo nucleic acid interference). These techniques are being tested in transgenic mice, and also in cell cultures.	Project	: ALS-parkinsonism dementia complex	
Overview:	Turnbull and his team are hopeful that RNAi will have a role in battling familial ALS and, later on, sporadic ALS.	Overview	: Owing to the overlapping symptoms of several progressive neurological disorders, ALS-PDC may hold the key to unlocking important information about degenerative neurological disorders including ALS.	

	Dr. Christopher Shaw
Where:	University of British Columbia
Project:	Feeding washed cycad (ancient plant that creates molecules that are toxic) to mouse models to study ALS-parkinsonism dementia complex.
Overview:	With the ALS-PDC models, the disease can be observed in sequence allowing researchers to see what happens before symptoms begin to show.
Funding:	U.S. Army's Defense Department, Natural Sciences and Engineering Research Council of Canada and the Scottish Rite Charitable Foundation of Canada.

Dr. Tim Doherty			
Where:	University of Western Ontario		
Project:	Improving the ways of measuring disease progression in ALS and other disorders of the motor system.		
Overview:	The ability to do so will be crucial to monitor the potential benefit of new treatments as they become available.		
Funding:	Compumedics Limited in Australia, the CIHR, the Natural Sciences, Engineering Research Council of Canada (NSERC) and the Canada Research Chairs Program.		

Dr. Neil Cashman

Where:	The Centre for Neurodegenerative Diseases, University of Toronto
	Direct - The ALS Centre at G.F. Strong Rehabilitation Centre (B.C.) and the University of British Columbia, Canada Research Chair in Neurodegeneration and Protein Misfolding Diseases (which includes ALS along with Prion diseases, Alzheimer disease and Parkinson"s disease) - January 2006
Overview:	Laboratory research focuses upon the cellular and molecular basis of neurodegenerative diseases.